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Abstract 

Prediction is frequently asserted to be the sine qua non of science, but prediction means different things to different people in different 
contexts. I organize and explain this diversity by addressing five questions. What does it mean to predict something? To answer this 
question, I describe concepts of prediction as prophecy, diagnosis, history, repeatability, and fate. What are we trying to predict? Here, I 
describe how predictions vary along several axes: general to specific, qualitative to quantitative, relative to absolute, point to range, and 
continuous to discontinuous. Where do predictions come from? In this case, I focus on deductive versus inductive reasoning. How do we 
test predictions? The answer here is not straightforward and I discuss various approaches and difficulties. How good are predictions? 
Not surprisingly, it depends on what is being predicted and how we judge success. Importantly, I do not espouse a “best”way to approach 
prediction but, rather, I outline its diverse manifestations so as to help organize practical thinking on the topic. 
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various forms of prediction are often involved. For instance, sta- 
tistical testing in data-based science typically evaluates empiri- 
cal support for formal predictions as a way of distinguishing be- 
tween alternative hypotheses about how the world works. Simi- 
larly, mathematical theories are based on assumptions that come 
from expectations (a weaker form of prediction) of how the world 
works. Furthermore, past empirical outcomes of basic science or 
mathematical theories often form the basis for predictions in fu- 
ture studies. For instance, understanding the heritability of a trait 
is interesting in and of itself, but it can also be used to predict how 

that trait will change under a given form of selection. In short, 
although prediction is not synonymous with science, it does 
permeate science in a diversity of manifestations. 

My goal in the present article is to examine and organize the 
various meanings of prediction and how they are used in ecology 
and evolution biology. I work toward this goal by attempting to 
answer five questions. 

What does it mean to predict something? I will evaluate various 
concepts of prediction and organize them into five basic cate- 
gories, three of which involve explicit prediction of either the 
future (prophecy), present (diagnosis), or past (history), and two of 
which involve implicit prediction in the sense of either repeatabil- 
ity or fate. 

What are we trying to predict? Another way of phrasing this ques- 
tion might be What are predictions good for? I will explain the nature 
of prediction along five axes: general versus specific, qualitative 
versus quantitative, relative versus absolute, point versus range, 
and continuous versus discontinuous. 

Where do predictions come from? I will explain the role of induc- 
tion and deduction in diverse manifestations that permeate ecol- 
ogy and evolutionary biology. 

How do we test predictions? Predictions can be made in the ab- 
sence of subsequent testing, but testing them supposedly makes 
for “good” science. However, many predictions are extremely dif- 
ficult to test, both conceptually and practically. 
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In Madagascar, there must be moths with probosces capable of 

extension to a length of between 10 and 11 inches [25–28 cm]! 

—Darwin ( 1862 ) 

By the year 2000, the United Kingdom will be simply a small group of 

impoverished islands, inhabited by some 70 million hungry people. 

—Ehrlich ( 1968 ) 

Prediction is frequently touted as a primary goal of science,
including in the fields of ecology and evolutionary biology (Peters
1991 , Mouquet et al. 2015 , Urban et al. 2016 , Lässig et al. 2017 ,
Maris et al. 2017 , Burford Reiskind et al. 2021 , Gompert et al.
2022 ). In particular, the concept of prediction is invoked as an
aspirational or practical goal in numerous proposals and papers.
For instance, an ISI Web of Science search (31 March 2022) for
prediction or predict as a topic yielded 5379 papers in just Ecology ,
Evolution , and The American Naturalist . However, even a cursory
examination of the many papers mentioning some form of
prediction indicates that invocation of the term is highly variable
in intent and meaning. I will provide many referenced examples
of these diverse uses as my arguments unfold, but, for now,
a few unreferenced signposts will serve to set the stage. One
major arena for prediction can be found in the numerous and
varied attempts to predict what the world will look like under a
future of global change. Another arena for prediction is the use of
surveys and statistics to infer whether a species is present (e.g.,
invasive species) or absent (e.g., endangered species) or to infer
its abundance (e.g., for management of fisheries or hunting). In
evolutionary biology, a common context for prediction is the use
of heritability estimates to predict the evolutionary responses of
organisms to natural or artificial selection. 

A lot of excellent, rewarding, and important science does not
so overtly invoke prediction as its goal. Instead, such basic sci-
ence or curiosity-driven science has the implicit goal of simply un-
derstanding the way the world works. Even in this case, however,
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How good are predictions? To answer this question, I will explain
ow judging the success of a prediction depends heavily on what
s being predicted and how we judge success. 
These five questions are not independent in practice. For in-

tance, the origins of a prediction (Where do predictions come
rom?) will influence tests of that prediction (How do we test pre-
ictions?), which could influence the success of that prediction
How good are predictions?). However, I have decided not to merge
hese questions because the correspondence is not one to one. For
nstance, a given origin for a prediction can lend itself to several
ypes of tests that can have varying degrees of effectiveness, de-
ending on the goals. I feel it is important to outline the various
ptions for each question separately because they can be mixed
nd matched in various ways. 
Before starting to answer the questions, I need to clearly frame
y goals and intended audience while also making clear what I
m not attempting to do. For starters, my article is not a philo-
ophical argument along the lines of whether “good” predictions
re possible, whether “good” science should require predictions,
r what types of predictions or tests are “best.” Similarly, I do not
eview how various philosophers of science have defined predic-
ion, although I do provide citations that can be used as an entrée
o that rich literature. Instead, my article is a pragmatic attempt
o organize and operationalize the way prediction is currently be-
ng used in ecology and evolution, and so my intended audience
s an inclusive mix of everyday practicing biologists focused on
mpirical questions. By my pitching this big tent, readers will on
ccasion think Oh, that isn’t the right way to do things or That isn’t
hat I consider to be prediction . That is fine, because my approach is
ore along the lines of “People are already doing this thing, and

hey are calling it prediction , so let’s try to see how it fits in to the
igger picture.”
Given this big-tent motivation, my writing often provides lists

f examples that are signposts to diverse topics and studies in
 particular category. These examples are far too numerous for
ach to have a detailed explanation and robust citation list, al-
hough I certainly provide both at important junctures. Instead,
he idea is for diverse readers to perhaps spot their own re-
earch areas within these lists, which can help to orient their
wn thinking within the broader organization framework. Along
he same lines, I cannot provide explanations for some of the
isted methodologies (e.g., futures analysis, adaptive manage-
ent, cross-validation), although I do provide citations for readers

nterested in more details. For all of these reasons, my article is
uite different from previous discussions of prediction in ecology
nd evolution. 
Definitions and explanations for how I use various terms are

rovided in table 1 . Importantly, in this table, I am explicit about
hat is included in each term and therefore (by exclusion) what

s not. 

hat does it mean to predict something? 
hen we say we are making a prediction in ecology or evolu-

ion, what, precisely, do we mean? It won’t surprise readers when
 say that prediction means different things to different people and,
herefore, its definition will need to be hierarchical, starting broad
nough to encompass the breadth of actual uses in our disciplines
nd then parsed into a set of more precise definitions for various
orms of usage. At the broadest level, the key idea uniting all of the
eanings and uses is that prediction about the state (of a system)
r outcome (of a process or experiment) must be made before that
tate or outcome is known by the predictor. By contrast, after-the-
act (i.e., not prediction but postdiction ) interpretations of a result
re fine, but they must be noted as such and not masqueraded
s predictions that were tested in the study. Witness Gould and
ewontin’s ( 1979 ) famous critique of post-hoc just-so stories in
volutionary biology. The reality is that just-so stories can be used
o generate predictions for testing in further research, but they
re not predictions tested within the study that spun the story.
Of course, another criticism in that famous paper was that many
uthors assumed but never tested adaptation itself—as opposed
o, e.g., drift.) 
I need to make a further distinction among the five concepts of

rediction outlined below. The first three assume an explicit state-
ent about an unknown future (prophecy), present (diagnosis),
r past (history), whereas the last two can be considered implicit
need not be formally stated) predictions based on previous out-
omes (repeatability) or presumed inevitabilities (fate). The two
ets of categories are not mutually exclusive; for example, a pre-
iction can involve an element of prophecy (about the future) that
s derived from insights about repeatability (past outcomes in sim-
lar situations) or fate (a sense of inevitability). 

rediction as prophecy 

“If I have eschewed the word prophet ; I do not wish to attribute 

to myself such a lofty title at the present time.”

—Nostradamus 

The word prophecy can imply the utterance of a prophet or some
ther divine insight, but common use of the term simply means
a prediction” (Oxford Languages) or “a prediction of something to
ome” (Merriam-Webster). In this more general sense, prediction
s prophecy might conform best to conventional interpretation
nd public perception. The idea is that we can know (from existing
nformation) or guess enough about a given system to say what
ill happen in the future. Prophecy is the form of prediction that
ne finds in weather and election forecasts—albeit in the form
f a probability (more about this later). In ecology and evolution,
rediction as prophecy is particularly common in global change
rojections, with countless studies predicting range shifts or ex-
inctions or phenological changes or shifts in community compo-
ition or any number of other future patterns (Urban et al. 2022 ). 
Such a priori predictions of the future can serve two potential

unctions. (I repeat the common phrase a priori prediction but, of
ourse, the pre- of prediction has the same meaning as a priori .)
irst, when faced with uncertain futures, we might wish to know
hich are most likely so that we can prepare for them—such as

n scenario analysis or futures analysis (Duinker and Greig 2007 ,
rban et al. 2016 ). Examples include predicting invasive species
Gallien et al. 2010 ), anticipating forest pathogen outbreaks (Hud-
ins et al. 2017 ), and projecting sustainable fish harvests (Hyun
t al. 2005 ). Some studies then further evaluate how particular
ecisions in the present might influence the probability of dif-
erent outcomes in the future, such as by generating a series of
rojections on the basis of possible actions by management or
overnment or societies. Importantly, any failure of prediction as
rophecy is typically unknown until it is too late to do anything
bout it, and, therefore, the whole predictive process needs to be
epeated for the next relevant time step or location. This iterative
rocess sometimes plays out in nearly real time, such as in con-
inuously updating adaptive management strategies (Allan and
tankey 2009 ). 
Another motivation for prediction as prophecy is to formalize

cientific honesty as idealized in the scientific method. That is,
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Table 1. Definitions and explanations of terms as they are used in the present article. 

Term Definition and explanation 

Hypothesis An expectation about how a system works that can be used to generate a testable prediction that must be 
true if that hypothesis is correct. 

Prediction A formal assertion about a state or outcome before that state or outcome is known. For instance, one can 
predict the state of the world in the past, present, or future—as long as that state isn’t known in advance 
of the prediction. Or one can predict what will happen in the future given a particular manipulation in 
the present. Note that the making of a prediction does not mean that the prediction will be 
tested—merely that it could be—or that the outcome will be apparent without the need for testing. 

Expectation Similar to a prediction, but weaker, implying higher uncertainty and less “surprise” should the expected 
outcome not obtain. 

Question A statement of what one would like to know about a system (past, present, or future). A question can be 
used to generate a prediction, or it can be used in lieu of a prediction. That is, answering a question does 
not require making a prediction about what the answer to that question should be. 

Predictable A state or outcome for which a prediction would be precise and accurate assuming adequate knowledge of 
the system. For something to be predictable, a prediction doesn’t necessarily have to be made, nor—if a 
prediction was made—that it was accurate (leaving aside how accuracy would be assessed). The term 

“predictability” then would invite a quantitative assessment of just how predictable something is—or 
would be. 

Prophecy (prediction as …) When an explicit (that is, formally stated) prediction is about the future state of system. Note that the 
term prophecy does not require (and, in this definition, does not involve) invocation of the divine or 
utterance of a prophet. 

Diagnosis (prediction as …) When an explicit (that is, formally stated) prediction is about the current state of system. 
History (prediction as…) When an explicit (that is, formally stated) prediction is about the past state of system. 
Repeatability (prediction as …) When a similar set of conditions generates a similar outcome, it can be considered an implicit (need not be 

formally stated) prediction. A phenomenon that is repeatable would also be predictable if we knew 

enough about the important driving factors. The related term “repeatable” less clearly invites a 
quantitative assessment of just how repeatable something is or is expected to be. 

Fate (prediction as …) When logic or a wealth of evidence suggests that an event or outcome (past, present, or future) is 
inevitable—or nearly so, it can be considered an implicit (need not be formally stated) prediction. This 
term is not intended in the present article (nor in common usage) to imply absolutely surety—merely a 
sense of near inevitability. For instance, all indicators point toward a particular outcome and so, barring 
some completely unforeseen turn of events, that outcome seems almost predetermined. 

Parallel or convergent (in the 
sense of evolution) 

A specific case of “repeatable” that emphasizes the extent to which evolution generates similar outcomes 
under similar conditions from similar (parallel) or different (convergent) starting points. 

Forecasting Use of data from the past or present to make a prediction about the future. 
Hindcasting Use of data from the present or part of the past to make a prediction about another part of the past. 
Uncertainty The level of confidence in a prediction or in the outcome of a test of a prediction. Examples of quantitative 

measures of uncertainty can include probabilities of various alternative outcomes, predictive power 
(e.g., r 2 or likelihood) of various models, or confidence intervals for parameter estimates. Various types of 
uncertainty are outlined in Milner-Gulland and Shea ( 2017 ). 

Note: These definitions variously overlap with (and deviate from) those stated by other authors—who often do not agree with each other. It would not be profitable 
to detail these various associations; rather, the definitions listed in the table are intended for interpretation within the context of the present article. Importantly, 
many of the definitions are stated such that they imply a yes or no answer (e.g., something is or is not predictable or repeatable)—and, in some cases, such an 
answer is sufficient. Most of the time, however, a more quantitative (e.g., how predictable and how repeatable) answer will be more appropriate (see the text). 
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scientists generate a hypothesis, make a prediction on the basis
of that hypothesis, and then test that prediction with new data. If
the data fail to support the prediction, then we are told the orig-
inal hypothesis should be rejected and that we should generate
a new hypothesis. One manifestation of this approach appears in
frequentist statistics that infer support for a hypothesis only when
an analysis leads the researcher to reject the null hypothesis of no
effect at a chosen critical value (usually p < .05). A different mani-
festation appears in the Popperian approach of falsifying hypothe-
ses, where the favored idea is used to generate a prediction. If a
“severe” test fails to support that prediction, then we are told to
abandon the hypothesis and seek a new one (Popper 1959 , Chitty
1996 ). Of course, slavish adherence to focusing only on the statisti-
cal testing of such a priori predictions can cause a scientist to miss
important but unexpected patterns in the data (Yanai and Lercher
2020 ). Furthermore, prediction as prophecy can be a temptation
to dishonesty, such as hypothesizing after the results are known
(remaking the hypothesis to fit the data), the file-drawer problem 

(not publishing results that contradict the hypothesis), observer 
bias, confirmation bias (deemphasizing or not publishing contra- 
dictory results), and falsifying data to fit the original hypothesis.
These and other issues associated with the statistical testing of 
predictions have been discussed at length from diverse perspec- 
tives (Jennions and Møller 2002 a, Rosenberg 2005 , Kardish et al.
2015 , Parker et al. 2016 , Fraser et al. 2018 ). Suggested solutions to
these issues include preregistration of the experimental hypothe- 
ses, design, and analysis plan—along with the increasing use of 
“blind” observers (Parker et al. 2016 ). 

Prediction as diagnosis 

“I’m Al Gore, and I used to be the next president of the United 

States of America”

—Al Gore 
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Some readers might feel that prediction must be about the fu-
ure; however, in common practice, this criterion is not required.
or instance, many ecological and evolutionary studies predict a
attern that should be evident in nature if we assume a partic-
lar hypothesized mechanism is important; then they test that
rediction using existing data from the present or past. Of course,
t remains true that a prediction must be about an outcome (past,
resent, or future) that is not already known. In this sense, pre-
iction as diagnosis is an attempt to infer the current state of a
ystem, as opposed to some future state (as in prophecy above),
hich would be more akin to prognosis. In public perception, pre-
iction as diagnosis might appear as answers to questions such as
as a particular politician won an election? or Does a patient have cancer
r COVID 19? In ecology and evolutionary biology, it might appear
s answers to questions such as Is a given species present (e.g., an
nvasive species) or absent (e.g., an endangered species) from a location? ,
s the productivity of a particular forest or a particular lake limited by
hosphorous or by nitrogen? , or Are two groups of organisms the same
pecies or are they different species? 
Prediction as diagnosis is often needed because the real (true)

tate of a system might be unknowable (or at least unmeasur-
ble), and so we must employ proxies or indicators to suggest
he true state (Noss 1990 , Stephens et al. 2015 ). Examples of
uch proxies in ecology and evolution are numerous. We can
se various indices to infer ecosystem health, such as the IBI
the Index of Biotic Integrity; Beck and Hatch 2009 ). We can em-
loy standardized surveys to infer species presence or popula-
ion abundance, such as direct observation along transects, in-
irect observation via camera traps, or very indirect (but often
ore inclusive) quantification via environmental DNA. In evo-

utionary biology, we can use genetic markers or breeding ex-
eriments to assess whether two groups are separate species
Coyne and Orr 2004 ), and we can measure heritability or addi-
ive genetic variance to estimate evolutionary potential (Hansen
t al. 2011 ). Furthermore, the knowledge that organismal traits
re phylogenetically correlated (i.e., species relatedness predicts
rait similarity) is often used to infer the expected trait value of
pecies in a phylogeny that has not been measured for that trait
e.g., Swenson 2013 ). 
As these examples highlight, prediction as diagnosis some-

imes emerges from attempts to detect or quantify the item of
nterest itself, such as actually counting individuals of a focal
pecies, whereas, in other cases, it is based on indirect indica-
ors, such as remote sensing of spectral profiles to infer vegetation
ypes (Xie et al. 2008 ). For prediction in the case of a yes or no di-
gnosis, such as whether a given species is present or absent, we
eed to be concerned with false positives (the entity is absent even
hough our proxy infers that it is present) and false negatives (the
ntity is present even though our proxy infers that it is absent;
ielding and Bell 1997 ). To minimize such errors, we need to em-
loy specific sampling designs optimized to detect rare species or
henomena, such as “montane unicorns” (Hurlbert 1990 ). We also
eed to be aware of factors influencing detectability, as well as
arious other biases. For instance, a focal species might inherently
void our capture methods (e.g., “trap shyness”; Wegge et al. 2004 ),
r we might survey and test in only convenient locations (Koenig
t al. 1992 ) or through easily measured but imperfect proxies (e.g.,
ater conductivity to predict salinity). 

rediction as history 

“Under the appropriate set of conditions, Alexander predicted, 

evolution ought to produce a eusocial vertebrate, even though 
eusociality in the naked mole rat (or any other vertebrate) was 

unknown at the time.”

—Braude ( 1997 ) 

Studies of the past might seem even less likely to involve
rediction than studies of the present. To the public, at least,
t might seem that archaeologists and paleontologists sim-
ly dig things up and try to understand them, that histori-
ns read old texts and listen to oral histories to puzzle out a
arrative, and that geneticists sequence genomes and blindly
se statistical outcomes to infer evolutionary history. But even
hese seemingly exploratory efforts are often guided by pre-
ictions of one form or other. Some of these predictions re-
ate to when and where to look for something (Verhagen and
hitley 2011 ). For instance, paleontologists use expectations from

eological ages and rock types to guide where to search for fos-
ils that might capture evolutionary transitions. Other predictions
f the past appear in typical hypothesis-testing form. That is, re-
earchers have examined existing information to generate pre-
ictions about the past that have then been tested in further
tudies (e.g., birds evolved from dinosaurs, Neanderthals mated
ith Homo sapiens , whale populations went through genetic bot-
lenecks because of hunting, and the Earth was struck by a mas-
ive meteor at the end-Cretaceous extinction). 
Predictions about the past (and present) are especially suscep-

ible to retesting when new data or methods become available.
or instance, the development of radioactive isotopes for dating
ocks or carbon has completely overturned many ideas about the
ast, as has the development of DNA sequencing, especially of
ncient genomes. Similarly, new statistical tools often lead to the
eevaluation of existing data sets. As one example, the use of cli-
ate envelope models to predict the past distributions of species

s subject to new or improved predictions as models are refined
Nogués-Bravo 2009 ). As another example (the full saga is ex-
lained in Hunt et al. 2008 ), contemporary populations of stickle-
ack fish show trait changes that clearly reflect rapid adaptation
o changing environments. The expectation, then, would be that
e could infer the action of natural selection for fossil time series
f stickleback showing the same trait change while experiencing
he same environmental change, yet standard statistical methods
eveloped with that goal in mind could not reject the null hypoth-
sis of randomness. Improved statistical methods resolved the is-
ue by providing greater support for the action of natural selection
han for the random alternative (Hunt et al. 2008 ). 

rediction as repeatability, consistency, or 
eproducibility 

“Insanity is doing the same thing over and over again and ex- 

pecting different results.”

—Anonymous 

If a scientist was to conduct the same experiment multiple
imes, how often would the same outcome emerge? The multiple
imes could, in this instance, mean repeated measurements of the
ame experimental unit (i.e., measurement error), different repli-
ates of a given treatment within an experiment (e.g., replicate
ials, enclosures, ponds, or plots), repetition of an entire experi-
ent at two different times (e.g., different years) in the same lab-
ratory, the use of different software packages to analyze the same
ata (Shafer et al. 2017 ), or repetition of an experiment across dif-
erent laboratories. Such replicates—especially of the last type—
re considered to be the basis for reproducibility in science, which
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Figure 1. Six suggested “laws” or “rules” in ecology and evolution. 
Rapoport’s rule states that organisms found at higher latitudes have 
greater latitudinal ranges. Bergmann’s rule states that organisms found 
in colder temperatures have larger body sizes. MYBP is Million Years 
Before Present. Cope’s rule states that body sizes increase in animal 
lineages through time. Allen’s rule states that organisms found in colder 
temperatures have shorter appendages (limbs) relative to body size. 
Rensch’s rule states that, within a lineage, sexual size dimorphism 

increases with increasing body size when males are the larger sex but 
decreases with increasing body size when females are the large sex (the 
dashed line is the 1:1 line where males and females are the same size). 
Gloger’s rule states that dark pigmentation is more common in more 
humid and warmer environments. The statement of these “rules” does 
not imply that they are necessarily very predictive; in fact, many 
empirical exceptions have been reported for each. 
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has been asserted as the reason for detailed methods sections
and archived code and data (Parker et al. 2016 ). Although some
authors (e.g., Cassey and Blackburn 2006 ) distinguish repeatability
(the experiment can be conducted on the basis of the information
given) from reproducibility (the same result is obtained when an
experiment is repeated), I will use repeatability for the latter intent
because doing so is common in the literature (see below). 

Moving beyond formal experiments, repeatability can be
evaluated for strictly observational studies of organisms and
environments. If, for instance, we are interested in the among-
population correlation between environmental variables and
trait values (MacColl 2011 ), we can ask How consistent is the corre-
lation across space or time? That is, we can estimate and compare
environment–trait correlations for the same set of populations in
different years (Gotanda et al. 2013 ); different sets of populations,
such as on different continents (Gilchrist et al. 2004 ); or different
taxonomic groups, such as multiple species in the same locations
(Sanderson et al. 2021 ). Temporal repeatability in these cases can
address questions about stability, stasis, equilibria, resistance,
and resilience (Pimm 1984 ). Spatial and taxonomic repeatabil-
ity can inform questions about evolutionary convergence or
parallelism, such as when similar traits or genotypes evolve
independently in similar environments (Lässig et al. 2017 , Oke
et al. 2017 , Bolnick et al. 2018 , Heckley et al. 2022 ). Furthermore,
these different levels of repeatability can be merged to answer
question about the spatial or taxonomic consistency of temporal
trends in response to environmental change (Parmesan and Yohe
2003 , Oke et al. 2020 ). Examples include assertions of “globally
coherent signatures of climate change” (Parmesan and Yohe
2003 ) or various biogeographic “rules” or “laws,” such as Cope’s
rule, Dollo’s law, Bergmann’s rule, and Rapaport’s rule (Ashton
2001 ). Figure 1 shows each of these cases in idealized form and
explains some of them. 

Prediction as repeatability also figures heavily in studies of trait
variation at the individual level. That is, if one measures the same
trait in the same individuals at multiple times, one can consider
how individually consistent are those trait values—especially in
relation to other individuals (Nakagawa and Schielzeth 2010 ).
Such individual repeatabilities are sometimes asserted to set an
upper limit on the heritability of a trait (Dohm 2002 ); that is, if
variation among individuals is not repeatable through time, then
it can’t be heritable. The consideration of individual repeatabil-
ity has taken on particular importance in the study of behavior.
Specifically, if a particular behavior is repeatable through time,
then perhaps it reflects something about the personality or behav-
ioral type of animals (Bell et al. 2009 ). Furthermore, if individual
behavior is also repeatable across contexts (e.g., in the presence
of mates versus predators), then perhaps it can be considered a
behavioral syndrome (Sih et al. 2004 ). 

A further manifestation of prediction as repeatabilty appears
in the context of heterogeneity in meta-analysis. Meta-analyses
typically seek to estimate a consistent effect shared across mul-
tiple experiments and systems. Therefore, heterogeneity among
studies points to at least some nonrepeatability of an effect across
experiments or contexts or taxa (Senior et al. 2016 ). Various mod-
erators are then added to the analysis in an attempt to explain
some of the heterogeneity and thereby improve consistency of ef-
fect size estimate within a given context or taxa. 

Prediction in the sense of repeatability as just described (and in
the sense of fate as described below) might seem more about pre-
dictability than about prediction per se. However, I included the
concepts in the present article because they give a strong sense of
implicit prediction. That is, a highly repeatable pattern can lead
to an implict expectation of an outcome without needing to state 
it as a formal prediction—as, I would argue, is common in many
empirical papers. Of course, a repeatable pattern can certainly be 
used to generate an explicit prediction about the past, present, or 
future. 

Prediction as fate, inevitability, or destiny 

“I do not like the idea that I am not in control of my life.”

—Neo in The Matrix 
“Winter is coming.”

—House Stark in Game of Thrones 

Prediction as fate is the idea that a particular outcome is in-
evitable, or nearly so, under the expected range of conditions.
Some scientists (and some reviewers of this article) argue that 
fate is not prediction in the usual sense. Take chaos as an exam-
ple; the outcome can be inevitable, but it is also unpredictable in
the usual a priori sense, because it is extremely sensitive to initial
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onditions (May 1976 , Rego-Costa et al. 2018 ). However, if we had
erfect information, we would, in fact, have been able to make an
ccurate prediction of the outcome. Therefore, the relevance of
ncluding the concept in the present article emerges when predic-
ion is considered broadly enough to include related concepts such
s predictability and repeatability . In short, an inevitable outcome is
xtremely predictable, regardless of whether we make an explicit
rediction of that outcome. Of course, as we will see later, such
upposed fates are—in fact—rarely if ever inevitable. Therefore,
y use of the term is intended to imply a sense of near inevitabil-

ty; that is, all the indicators or signs point toward a particular
utcome. As an example, the continuation of global warming in
he years to come is inevitable. 
In evolution, an important promoter of prediction as fate can

e strong feedback loops (Crespi 2004 ). Negative feedback loops
an generate evolutionary stability, such as in evolutionary cycles
riven by coupled predator–prey dynamics (Blasius et al. 2020 ) or
egative frequency dependence (Nosil et al. 2018 ). Positive feed-
ack loops can generate runaway evolutionary outcomes between
pecies, such as so-called arms races driven by predator–prey
r host–parasite interactions (Dawkins and Krebs 1979 ) or even
ithin species, such as runaway sexual selection (Pomiankowski
nd Iwasa 1998 ) or evolutionary environmental degradation (Had-
eld et al. 2011 ). Other examples of suggested inevitable evolu-
ionary fates include specialization as an evolutionary dead end
Futuyma and Moreno 1988 ) and taxon cycles on islands (Ricklefs
nd Bermingham 2002 ). 
Ecology also can invoke a strong sense of prediction as fate,
hether stemming from internal dynamics or external drivers.
s in evolution, these fates are often envisioned as near-inevitable
hanges, such as ecological succession (Walker et al. 2010 ) or com-
unity assembly rules (Belyea and Lancaster 1999 ). Ecological

ate also can arise from processes generating stability, such as in
cosystem resistance or resilience (Gunderson 2000 , Folke et al.
004 ). Of particular interest has been the potential inevitability
f shifting between stabilizing and destabilizing outcomes, such
ipping points between alternative stable stages (Beisner et al.
003 , Scheffer et al. 2012 ). Short of the tipping point, systems pre-
ictably resist change despite shifts in external drivers, but past
hat tipping point, the system inevitably changes to a new state
nd can stay there even after reversal of changes in the original
xternal drivers (i.e., hysteresis). 
Prediction as fate is highly dependent on scale. In some cases,

n outcome is inevitable on a short time scale: Yes, winter is in-
eed coming. In other cases, an outcome is inevitable only on a
ong timescale: All life on Earth will disappear when our sun ex-
lodes. Apart from such extreme inevitabilities, the invocation of
rediction as fate does not mean that such fate is, in fact, truly
nevitable—only that it has an extremely high probability barring
ome completely unforeseen turn of events. To return to the above
xample, a continuation of global warming in the years to come is
nevitable—unless, of course, a massive volcanic eruption or me-
eor impact occurs and fills the atmosphere with ash or dust. 

hat are we trying to predict? 

“This trend is of serious concern because it projects the global 

collapse of all taxa currently fished by the mid-21st century 

(based on the extrapolation of regression in figure 3a to 100% 

in the year 2048).”

—Worm and colleagues ( 2006 ) 
“We predict, on the basis of mid-range climate-warming scenar- 

ios for 2050, that 15%–37% of species in our sample of regions 

and taxa will be ‘committed to extinction’”

—Thomas and colleagues ( 2004 ) 

Whatever form prediction takes—whether prophecy, repeata-
ility, fate, or diagnosis—the specific form of the prediction can
ary along several axes, which I outline as five contrasts: general
ersus specific, qualitative versus quantitative, absolute versus
elative, point versus range, and continuous versus discontinuous.
redictions in ecology and evolution often mix and match these
arious categories in a diversity of ways (Burford Reiskind et al.
021 ) and other ways of organizing the goals of prediction have
een suggested (e.g., Maris et al. 2017 ). 

eneral versus specific 
eneral predictions extend beyond a specific context, such as a
articular replicate or experiment or population or location. As
uch, general predictions transcend nuances and idiosyncrasies
o instead reveal some underlying universal truth. This striving
or “general” or “universal” laws of ecology and evolution is some-
imes argued to stem from physics envy (Lawton 1999 , Murray
000 , Penny 2005 ). General predictions also permeate extreme ver-
ions of Popperian falsifiability, in which the failure of a given ex-
eriment to confirm a prediction should cause the rejection of
he general hypothesis that made that prediction (Chitty 1996 ).
y contrast, specific predictions embrace the ubiquity of context
ependence, in which an experimental or observational outcome
ill depend on the evolutionary context, the current environmen-
al conditions, and the venue where the experiment or obser-
ations are conducted (Skelly and Kiesecker 2001 , Elliott-Graves
019 ). Figure 2 provides concrete examples of various manifesta-
ions of such context dependence in ecology and evolution. Spe-
ific predictions are not expected to uncover some universal truth;
ather, they are intended to apply to a particular set of conditions.
n reality, predictions always have some degree of generality and
ome degree of specificity, and I am simplifying the contrast for
he purposes of illustration. 
Even specific predictions are intended to transcend random

tochastic noise to reveal some form of predictable context depen-
ence, what Elliott-Graves ( 2019 ) called causal heterogeneity (Elliott-
raves 2019 ) and I call predictable contingency —with the intentional
xymoron focusing attention on the problem. For instance, two
replicates” of the same experimental treatment might give differ-
nt outcomes because they differ in some other (unplanned or un-
easured) deterministic factor that influences the response vari-
ble. For instance, perhaps plants in two supposed replicates of
he same nutrient level differ in growth because those replicates
iffer in temperature or light. One might imagine that random ef-
ects structure in a statistical model can circumvent this problem;
owever, this approach factors out some of the otherwise unex-
lained variation, giving an illusion of high predictability, as op-
osed to generating improved predictions by understanding the
auses of variation. With such an understanding, however, stud-
es can measure uncontrolled variables for inclusion as statistical
ovariates, or they can manipulate those other causal factors in
rossed experimental designs. In plant ecology, for example, stud-
es often examine a given factor of interest (e.g., diversity levels)
nder different light or nutrient levels (e.g., Johnson and Agrawal
005 ). In evolutionary biology, studies often measure genetic ef-
ects in different environments, revealing context dependence in
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the form of interactions between genotype and environment (see
the examples in figure 2 ). 

Making and testing general predictions is therefore compli-
cated by several realities. First, ecological and evolutionary pat-
terns tend to be multicausal, such that an experiment failing
to support a specific mechanism cannot be used to falsify that
mechanism generally, because the role of that mechanism might
depend on other measured or unmeasured factors (Hendry 2019 ).
Such multicausality also makes it hard to apply Platt’s ( 1964 )
vision of strong inference to ecology and evolution (Hilborn and 
Stearns 1982 , Quinn and Dunham 1983 , Hilborn and Mangel 
1997 ). Second, effects documented under one set of conditions 
can change when novel nonanalog conditions arise, as has been 
argued for the current Anthropocene (Fitzpatrick and Hargrove 
2009 ). The hope then is to generate predictions that are positioned
in the optimal place along the continuum of general to specific.
Aiding this goal, the main effect of a factor of interest in a meta-
analysis can be used to obtain a general prediction, whereas the 
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eterogeneity of estimates can be used to test more specific pre-
ictions by adding various appropriate moderators (Senior et al.
016 , Heckley et al. 2022 ). 

ualitative versus quantitative 

uantitative predictions are about a specific number or set of
umbers: as examples, temperatures are increasing at a certain
ate, two lineages split apart a certain number of years ago, the
umber of returning salmon is ten thousand, and so on—with or
ithout various measures of uncertainty. Qualitative predictions,
owever, are about categories: as examples, temperatures are in-
reasing more rapidly in one place than in another, two lineages
plit apart before two other lineages split, the number of salmon
s greater this year than last, and so on. Many qualitative predic-
ions invite a yes-or-no or a this-or-that answer: evolution is or is
ot parallel, an invasive species is or is not present, a behavior is
r is not repeatable, flowering time is or is not changing, species
 will outcompete species B, and so on. Such qualitative predic-
ions tend to be reinforced by the frequentist approach to statis-
ics, where we infer that something is happening if we can reject
he null hypothesis at some critical value of the test statistic cor-
esponding to (usually) p < .05. Qualitative predictions also lend
hemselves to model comparisons, where one model is accepted
s “best,” and that model is the only model considered thereafter
Stephens et al. 2007 ). 
Quantitative predictions, which are more often framed as ques-

ions, tend to invite how much , how many , or how strong answers
Jennions and Møller 2002 a, Peek et al. 2003 , Hendry 2017 ). For in-
tance, we might ask how much of the variation in phenotypes or
enotypes or alleles is explained by parallel evolution (Oke et al.
017 , Bolnick et al. 2018 , Heckley et al. 2022 ), what percentage of
 fish community is made up of invasive species, how repeatable
 behavior is (Bell et al. 2009 ), or how much has flowering time
as advanced over the past century (Parmesan and Yohe 2003 ).
igure 3 shows quantitative representations of phenomena usu-
lly pitched as qualitative predictions: parallel evolution and the
epeatability of behavior. Quantitative questions such as these are
einforced by estimates of effect size, with confidence intervals
round those effect sizes (Halsey 2019 ), as well as relative weights
n model comparisons (Stephens et al. 2007 ). 
Most of the time in ecology and evolution, quantitative ques-

ions will be more useful than qualitative predictions, because it
s more valuable to know how strong an effect is than simply if an
ffect is present. For example, if you were talking to a person who
ived on the coast and you told them that sea level was going to
ise, their response would surely be “Okay, by how much?” They
robably wouldn’t care much if the rise was going to be 0.01 mil-
imeter per year, but they might get concerned if was 1 centimeter
er year. If a manager was told fish population size was declining,
hey would surely ask, “By how much?” If a biologist was assessing
volutionary potential, it wouldn’t be enough to know that fitness
ariation was heritable; it would matter just how heritable it was
Hendry et al. 2018 ). 

bsolute versus relative 

bsolute predictions tend to be specific values or ranges of val-
es, although they also can be qualitative yes or no predictions
as above). The quotes at the top of this section provide some in-
amous examples. Relative predictions, by contrast, assert the or-
er (but not the precise value) of differences: one value is bigger
r smaller than another value, or one effect is more or less im-
ortant than another effect (Dietze 2018). Relative predictions are
specially useful when absolute predictions are tenuous. For ex-
mple, we might not know with much precision or accuracy the
xtinction risk of two species, but we might know with high confi-
ence that extinction risk is higher for one species than the other.
r we might not have enough information to generate a good ab-
olute prediction of the rate of evolution of two trait types (e.g., life
istory versus morphology), but we might be very confident that
ne will evolve faster than the other. Other examples of relative
redictions might be that species richness is higher in the tropics
han elsewhere, body sizes increase with latitude (i.e., Bergmann’s
ule), and fitness at a given site will be higher for organisms
rom that site than for organisms from elsewhere (i.e., local
daptation). 
Relative predictions encourage comparative assessment based

he relative weights of different statistical models (Wagenmak-
rs and Farrell 2004 ), sensitivity analysis of different model pa-
ameters (Cariboni et al. 2007 ), and elasticity analyses of popula-
ion parameters (Benton and Grant 1999 ). For example, we might
ish to determine the best environmental predictor of ecological
r evolutionary change (van de Pol et al. 2016 ) or the best metric of
volutionary potential (Hansen et al. 2011 ) or the best model for
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evolutionary change in phenotypes (Hunt 2007 ). Of course, such
distinctions benefit from a clear indication via effect sizes of just
how good the “best” proxy or predictor or model really is, because
even the best might not be very good. 

Although the above examples of relative prediction tend to
qualitative (e.g., one model is better than another), relative pre-
dictions also can be quantitative, such as one model explaining
twice as much variance as another. And even if the initial pre-
diction is qualitative, its assessment often should be quantitative.
That is, a researcher might predict that one ecological mechanism
is stronger than another and then answer that prediction by say-
ing just how much stronger. 

Point versus range 

Point predictions emphasis an average effect or discrete outcome,
such as whether or not an invasive species is present or at what
rate sea levels are rising or whether or not a species will go extinct.
Range predictions emphasize a diversity of possible outcomes, ex-
pressed either as probabilities (e.g., 50% chance of extinction in
the next 100 years) or as a confidence interval (e.g., flowering will
advance 1–3 days per decade), or various alternative scenarios
(e.g., different emissions scenarios for climate change). 

Point predictions are more appealing in some respects. For in-
stance, Popper ( 1959 ) argued that probabilistic predictions are un-
falsifiable and therefore not scientific (Quinn and Dunham 1983 ),
in which case, it is hard to convince some prognosticator that
they were “wrong.” After predicting that Donald Trump had only
a 28.6% chance of winning the 2016 US Presidential election, Nate
Silver (fivethirtyeight.com) still claimed success in that he gave
Trump a higher chance of winning than most other statistical an-
alysts did. Moreover, point predictions can be more useful than
range predictions. For instance, knowing the actual best estimate
of the heritability of a trait is more useful than simply saying
a trait is heritable or not. However, range predictions can help
to avoid unrealistic expectations (e.g., biodiversity targets; Hiers
et al. 2016 ), can encourage preparation for uncertainty (Milner-
Gulland and Shea 2017 ), and can more readily accommodate mul-
ticausality and context dependence. 

Continuous versus discontinuous 
Continuous predictions are typically made about variation along
a continuous function (e.g., linear, logarithmic, exponential),
whereas discontinuous predictions tend to be about transitions
on or between functions (e.g., breakpoints, inflections, attractors).
A common example of continuous prediction is the extrapolation
of some past trend to some future year or of some geographical
pattern past the bounds of the study area. Examples include pre-
dictions of the number of species committed to extinction by mid-
century (Thomas et al. 2004 ) or the number of fish in the ocean
by 2050 (Worm et al. 2006 ). By contrast, discontinuous predic-
tion asks when a dramatic shift might take place, such as a tip-
ping point that leads to a rapid and perhaps not easily reversible
shift between alternative states (Scheffer et al. 2012 ). One form of
discontinuous prediction asks where feedback loops switch from
stabilizing to destabilizing, popularized in metaphors such as the
straw that breaks the camel’s back or how many rivets can be re-
moved from a plane before it crashes (Ehrlich and Ehrlich 1981 ).
Other examples of discontinuous prediction include the maxi-
mum sustainable rate of evolution (Kopp and Matuszewski 2014 ),
critical transitions in speciation (Nosil et al. 2017 ), nutrient levels
that shift lakes between alternative stable states (Scheffer et al.
1993 ), densities below which an extinction vortex kicks in (Fagan
and Holmes 2006 ), and various planetary boundaries (Rockström
et al. 2009 ). These discontinuous tipping point predictions can be 
hard to test because the current state of the system might not
reflect the inevitable fate that is coming, such as in the case of
extinction debt (Tilman et al. 1994 ). 

Where do predictions come from? 

“So you know what’s going to happen?”

“No, it was a feeling. But I can guess.”

—V for Vendetta 

One might imagine that most predictions are the natural prod- 
uct of evidence, data, experience, and intuition—in various mix- 
tures. That is, a researcher or prognosticator integrates previous 
information and interpretation to make an educated projection or 
guess as to the past, present, or future of a system—or what will
happen in a new set of observations or experiments. Such predic-
tions vary along a continuum from evidence based (existing data,
models, theory) to gut feelings as implied by the quote above, and
it is assumed we should place more confidence in the former. All
predictions, however, surely contain an element of both data and 
intuition; for example, models have assumptions that require un- 
certain choices by the designer. On the other extreme, what might 
seem to be purely gut feeling predictions rarely occur in a vacuum
of evidence but are instead based on varying degrees of experi- 
ence. As such, gut feelings about a complex problem can some- 
times incorporate a broader set of information and experience 
than can a formal mathematical or statistical model. We should 
obviously strive for evidence-based predictions, but the gut should 
not be ignored, and we shouldn’t pretend it is completely absent 
from model-based predictions. The key, instead, is to make sure 
that readers and users are aware of where on the continuum from
data to gut each part of a prediction falls. 

Overall, philosophers often divide the main approaches to pre- 
diction into deductive versus inductive reasoning (Mentis 1988 ,
Murray 2001 , Dodds 2009 ). Again, actual predictions rarely fall 
cleanly into either one or the other of these two categories, as
will be explained later. Deductive reasoning—often considered to 
be based on “first principles”—takes place when logical connec- 
tions are used to infer what must be true, such as “all A have
property B, C is a member of A, therefore C has property B.” De-
spite what some authors (e.g., Peters 1991 ) have argued, deduc-
tive predictions are common in evolutionary biology. Adaptation 
by natural selection, for instance, can be considered a logical out- 
come of heritable variation that influences differential survival 
or reproduction—in essence, a syllogism (Endler 1986). However,
as in all prediction, the outcome assumes that all else is equal.
When all else is not equal (e.g., populations are small and sub-
ject to drift), adaptation might not follow even when the compo- 
nent parts are present. And of course, empirical estimates of her- 
itability and selection could be wrong. As other examples, various 
biomechanical, physical, or frequency-dependent considerations 
can be used to define a realm of possible solutions (an envelope of
possibility) or an optimum solution or evolutionary stable states,
which are then later tested in the natural world. These predic-
tions often emerge through mathematical exploration, most ob- 
viously through optimality models or game theoretic approaches 
(Maynard Smith 1982 , Parker and Smith 1990 ), but also via
other optimization algorithms such as evolutionary algorithms or 
machine learning (Simon 2013 ). Examples of predicted possible 
solutions that are then tested using real organisms include the 
diversity of shell shapes in an adaptive radiation of snails (Stone 
1996 ) and pareto fronts generated by morphological constraints 
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Shoval et al. 2012 ). Examples of predicted optima often arise in
ife history theory (e.g., age at maturity given mortality schedules),
eproductive allocation (e.g., egg size given embryo mortality), and
oraging theory (e.g., ideal free distributions during foraging). De-
uctive predictions are also found in ecology (Wilson 2003 ), where
hey underly—and can be used to test—formal theory such as is-
and biogeography (MacArthur and Wilson 1967 ). Other potential
xamples include various aspects of community assembly and
rganization (e.g., niche packing, limiting similarity, food web as-
embly) and metabolic ecology (Brown 2004 ). 
Inductive reasoning occurs when predictions arise from an ac-

umulation of previous empirical observations. Perhaps the most
xtreme manifestation of this approach is the so-called empiri-
al school of limnology, which criticized attempts to understand
echanism and argued for an exclusive focus on the best em-
irical predictors of a given phenomenon (Peters 1991 , Rigler and
eters 1995 ). That is, if we want to know the color of water in a
ake, perhaps we can simply measure total phosphorus. Similarly,
f we want to know the metabolic rate of an endotherm, perhaps
ll we need to know is its body mass. Echoes of this type of ap-
roach can be seen in arguments for self-thinning (Westoby 1984 ),
ife history invariants (Charnov 1993 ), and the neutral theory of
cology (Hubbell 2001 ). Beyond such extremes, many other stud-
es generate predictions about what might happen in a new study
n the basis of previous related studies, sometimes formalized via
ayesian logic (Hilborn and Mangel 1997 ). In evolutionary biology,
nductive predictions are especially clear in the study of parallel
r convergent evolution: if five populations or species look similar
hen found in a similar environment, then so too should the next
opulation or species we examine. 
In reality, most predictions emerge from the joint considera-

ion of both logic (deduction) and empirical precedent (induction).
he theory of evolution by natural selection is a case in point. De-
uction was clearly important (as was noted above), but so too
ere the numerous empirical observations that Darwin assem-
led from domesticated animals, the fossil record, and geographi-
al distributions. Furthermore, logic is always conditioned by em-
irical experience; witness the famous prediction that, on the ba-
is of the physics of flight, bumblebees shouldn’t be able to fly
Magnan 1934 ). The empirical observation that bumblebees can,
n fact, fly (“And yet it flies”) lampooned the strict deductive ap-
roach and pointed to the need for empirical guidance. 
In closing this section, it feels important to note that some

urely empirical relationships are astounding predictive but also
nhelpful, misleading, or tenuous. Examples include autocorre-
ation (e.g., offspring are always younger than their parents; Ell-
trand 1983 ), extrapolation (e.g., the oceans will be empty of fish
y 2048; Hilborn 2006 ), chance ( p -hacking from data sets with
ots of variables; Head et al. 2015 ), reverse causality (Räsänen and
endry 2008 ), or various other lurking variables (Laubach et al.
020 ). My point here is that predictions based on existing empiri-
al relationships should really be backed by knowledge of causal
ssociations. 

ow do we test predictions? 

“If a man will stand up and assert, and repeat and reassert, that 

two and two do not make four, I know of nothing in the power 

of argument to stop him.”

—Abraham Lincoln 
Some predictions are not intended for testing in the usual sci-
ntific sense, such as predictions to help prepare for future events.
n these cases, the prediction turns out to be correct or not (or to a
iven degree) after its period of usefulness, and the resulting test
s valuable only in its ability to improve future predictions. Other
ypes of predictions do require—or at least benefit from—testing,
ecause they are hoped to reveal some underlying truth about the
orld or because they are intended for future application to situ-
tions where the outcome will be consequential. 
Some predictions are easily tested from a conceptual stand-

oint, such as through the collection of data from new geographi-
al locations or new experiments. Studies of parallel or convergent
volution are a case in point, where traits (e.g., color or life history)
hat previous work showed were associated with a particular envi-
onmental contrast (e.g., predation) are used to make—and then
est—predictions about the same traits when other populations
r species encounter the same contrast (for a review, see Heckley
t al. 2022 ). Other predictions, however, are much harder to test,
specially those for which new data cannot be collected and those
ade on temporal scales not amenable to timely assessment. In
uch cases, predictive models can be developed with a subset of
he data and then tested (cross-validated) with the rest of the data
Roberts et al. 2017 ). For instance, part of a time series can be used
o predict the rest of a time series, including hindcasting the past
using recent data to predict historical or archived data) or fore-
asting the present (using historical data to predict current con-
itions). In some cases, it is also possible to experimentally create
ast or future conditions in which empirical systems can be used
o test a variety of predictions. A particularly powerful example is
he resurrection of past genotypes for testing under present envi-
onmental conditions. Such resurrections have proven insightful
or a variety of organisms with dormant stages, such as seeds for
lants or resting stages for aquatic invertebrates or frozen sam-
les of microbes (Orisini et al. 2013). 
How do we test predictions about more distant futures? In one

ense, such predictions will inevitably be tested because we sim-
ly have to wait for the future to arrive. That is, every predic-
ion of how rising carbon dioxide levels will increase tempera-
ures or raise sea levels (or cause range shifts or species extinc-
ions or adaptive evolution) will inevitably be tested by the pas-
age of time. Unfortunately, by the time we find out if our predic-
ions were correct—and to what degree and in what sense—it will
e too late to do anything about it. Therefore, we attempt to test
redictions about the future in various indirect ways, such as the
bove-mentioned cross-validation (Roberts et al. 2017 ). Other ap-
roaches include the use of spatial patterns to test temporal pre-
ictions (substituting space for time; Pickett 1989 ), short-term ex-
eriments to test long-term outcomes (Wolkovich et al. 2012 ), and
imulation models (Peck 2004 ). Although these convenient sub-
titutions sometimes work well, experience teaches that spatial
atterns do not always mirror temporal changes, that short-term
xperiments often do not scale up to long-term outcomes, and
hat the outcome of simulation models always depends on the
ssumptions that went into them. 
How do we test whether a measurable proxy provides a good

ndicator of a (sometimes) unmeasurable reality? One example
s the attempt to infer the absence of something. Has an endan-
ered species gone extinct? Is an invasive species present? In such
ases, the chosen survey method might simply have imperfect de-
ectability, as is evidenced by the numerous instances where a
pecies thought to be extinct has been rediscovered (Fisher and
lomberg 2010 ) or an invader thought to be absent has—in fact—
een present (Trebitz et al. 2017 ). The same problem arises in
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Figure 4. Illustration of the role of venue in the outcome of ecological 
experiments, based on tadpole growth rate experiments in the 
meta-analysis of Skelly and Kiesecker ( 2001 ). The bars show the average 
natural log response ratio when the density of intraspecific competitors 
was increased (the gray bars) or when an interspecific competitor was 
added (the open bars). The error bars represent the 95% confidence 
interval. The results were similar among experimental venues 
(laboratory, mesocosm, field) for intraspecific competition but not for 
interspecific competition. Source: The figure is based on data provided 
by David Skelly. 
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quantitative inference, such as estimating the abundance of a
population or species. In most cases, the true number of indi-
viduals is unknowable, and so the best test for the predictability
of a given proxy becomes its correlation with some other proxy.
Alternatively, one can create experimental arenas with known
numbers of a given species to see how close the proxy comes to
the actual number present. A recent application of both meth-
ods comes in testing the predictive ability of environmental DNA
(eDNA) for species presence or abundance; that is, estimates from
eDNA are compared to estimates from traditional survey methods
or from experimentally constituted known communities (Mahon
et al. 2013 ). 

To what extent should predictions be tested in the complex real
world as opposed to controlled settings (Hendry 2019 )? A classic
manifestation of this debate was whether experimental tests in
microcosms or mesocosms generate realistic predictions about
what happens in actual lakes (Carpenter 1990 ). In some cases,
outcomes of the different approaches correspond and are there-
fore particularly convincing. For example, a simple experiment
adding phosphorus to only one side of a divided lake was much
more effective—especially for public opinion and policy makers—
at confirming the effects of phosphorous additions than were
numerous previous experiments in artificial settings (Schindler
1977 ). In other cases, outcomes are very different between ap-
proaches. Stated another way, the venue for testing a prediction
matters to the conclusion. As one example, experimental venue
(lab, mesocosm, or natural ponds) has a dramatic effect on the
outcome of experiments testing predictions about the effects of
competition on tadpole growth (Skelly and Kiesecker 2001 ; for de-
tails, see figure 4 ). Similarly, the responses of plants to a given
level of simulated warming under controlled conditions is very
different from their response to the same level of actual climate
warming in nature (Wolkovich et al. 2012 ). In evolutionary biol-
ogy, estimates of additive genetic variance and heritability—and,
therefore, evolutionary potential—depend critically on the envi-
ronmental conditions under which the variance components are
estimated. In a stunning example, Kellermann and colleagues
(2009) reported zero heritability to increased desiccation in several
Drosophila species, but van Heerwaarden and Sgró ( 2014 ) found
reasonable heritability for the same species under more realistic 
increases in desiccation risk. 

The main point of the preceding paragraph is that context mat- 
ters, such that the same experiment in different contexts can give 
dramatically different outcomes. As was noted earlier, my goal is 
not to prescribe a particular best approach to prediction and its 
testing but, rather, to describe and organize the various options. In 
closing, however, I will recommend a comparative approach—in 
which effect types and sizes are compared across various predic- 
tors and responses and contexts. Examples of studies comparing 
the same predictor across contexts include the effects of competi- 
tion across experimental venues (Skelly and Kiesecker 2001 ), the 
effects of warming on plant phenology across experiment types 
(Wolkovich et al. 2012 ), and the effects of predation on evolu-
tion across various trait types (Heckley et al. 2022 ). Examples of
studies comparing different predictors within and among con- 
texts include different forms of competition (interspecific versus 
intraspecific) in Skelly and Kiesecker ( 2001 ) and different poten-
tial modifiers (lineage, predator types, time for adaptation) of re- 
sponses by guppies to predation (Heckley et al. 2022 ). Comparative 
analyses such as these provide useful information on just how 

important context is for an outcome and also on the relative ex-
planatory power of a given prediction. 

How good are predictions? 

“All models are wrong, but some are useful.”

—Attributed to G. E. Box 

Many examples could be provided of successful predictions 
in ecology and evolution. Temperatures continue to rise, as do 
sea levels. Flowering times and breeding times are getting ear- 
lier (Parmesan and Yohe 2003 ). The catches in test fisheries are
correlated with the catches in actual fisheries (Hyun et al. 2005 ).
Biocontrol agents deemed specific to an invader rarely switch to 
native organisms (McFadyen 1998 ). Independent lineages coloniz- 
ing similar environments tend to evolve similar (parallel) pheno- 
types (Oke et al. 2019 ). Yet even in these obvious successes can be
found plenty of ambiguities and partial failures. Climate warm- 
ing predictions are so diverse that any trend is bound to match at
least one of them. Sea level rise is only accurately predicted after
accounting for increased water impoundment (Chao et al. 2008 ).
The rate of advancement of flowering time under experimental 
warming is far slower than the actual rate of change in nature
(Wolkovich et al. 2012 ), and some populations of animals are not
showing such advancement (e.g., Lane et al. 2012 ). Some biocon-
trol agents do end up attacking native species (Louda et al. 2003 ).
Parallel evolution is often only modest or even weak (Oke et al.
2017 ) and highly dependent on the level of investigation, such as
fitness, phenotypes, gene networks, genes, gene expression, or al- 
leles (Bolnick et al. 2018 ). Similarly, behavior is often not very re-
peatable, and many examples exist of evolutionary one-offs (de 
Queiroz 2002 ). Figure 3 shows empirical data that questions the 
classic expectations that evolution is highly parallel and that be- 
haviors are highly repeatable. 

And, of course, alongside such more or less accurate predic- 
tions can be found many abject failures, sometimes optimisti- 
cally recast as surprises (Doak et al. 2008 , Elliott-Graves 2019 ).
Introductions of mysid shrimp into Flathead Lake, Montana, in 
the United States, had the opposite ecological effect to that 
expected on the basis of their previous introduction to Koote- 
nay Lake, British Columbia, in Canada (Spencer et al. 1991 ).
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ntroductions of nonnative species often have surprising out-
omes, including exceptionally high abundances and expansion
o habitats not normally occupied in the native range (Urban
t al. 2007 ). Many instances of directional selection on herita-
le variation do not, in fact, generate the expected adaptive re-
ponses (Merilä et al. 2001 , Shaw 2019 ). Neutral genetic variation
s a demonstrably poor proxy for adaptive genetic variation (Reed
nd Frankham 2001 ). Overall, the predictive ability of single causal
actors in ecology and evolution is extremely low (Jennions and
øller 2002 a), although multicausal predictive ability is more rea-
onable (Peek et al. 2003 ). 
The goal of this section is not to argue that predictions are gen-

rally successful or not successful. Rather it has been to point out
hat most predictions tend to be partly successful and partly un-
uccessful, and we need to assess this variation on a quantitative
cale and light of our goals (Mouquet et al. 2015 , Burford Reiskind
t al. 2021 ). Do we care about the existence of a phenomenon
changing phenology) or the direction of a phenomenon (advanc-
ng spring phenology) or the magnitude or rate of a phenomenon
a certain number of days per decade) or the repeatability of a phe-
omenon (advances are seen in a certain percentage of species)?
he answer will depend on the goals of the prognosticator. Overall,
t is important to assert (when possible) the strength or success of
 prediction on the basis of some sort of quantitative effect size
e.g., frequency of occurrence, variance explained, likelihood ra-
io, Cohen’s d ) that can be compared within and across contexts,
esponse variables, locations, species, and studies. And such es-
imates should be (when possible) accompanied by a measure of
ncertainty, and I don’t mean a p -value but, rather, uncertainty in
he effect size estimate itself, such as a confidence interval. Devi-
tions between an a priori prediction and the actual outcome can
e assessed with similar quantitative measures. 

onclusions 

rediction is not a monolithic and invariant concept, especially
n ecology and evolution. Perhaps this variation should be viewed
s a problem, and we should work toward a single unified way
f defining and applying predictions. Or perhaps this variation is
 strength. Perhaps, the basic idea of prediction is a general one,
nd that general idea can be leveraged into several specific ap-
roaches that are useful in different contexts. I espouse this lat-
er viewpoint because it provides an overarching aspirational goal
hat reflects our ability to understand how the world works while
llowing flexibility and diversity in how we achieve that goal. 
If we understand the world, we should be able to say some-

hing about what will happen in a given set of circumstances,
ight? Well, sometimes we can, and such predictions or projec-
ions can be extremely satisfying intellectually or useful practi-
ally. Other times, however, our predictions are abjectly miserable,
ither because they lack precision or because they prove to be in-
ccurate, but why do some predictions fail in these ways? Maybe
uch failures point us toward other variables that will improve
redictability, in which case we are making progress toward ac-
urate and precise prediction. Or maybe such failures point to
nstances of the fundamental impossibility (given current data,
pproaches, and theory) of a robust understanding of the com-
lexity of ecology and evolution. Perhaps that complexity would
e predictable if we were able to measure all of the relevant vari-
bles with greater precision and accuracy, or perhaps it represents
ure stochasticity that we must despair at ever explaining. We
ill never reach the ideal of Laplace’s demon—an imaginary crea-
ure that knows everything about everything (Gompert et al. 2022 ),
ut predictive failures are still an invitation to try harder or to try
marter with new data, approaches, and theories while also cau-
ioning against the hubris of thinking we have it all figured out. 
My hope is that the present perspective will help to organize

esearchers’ thinking about prediction in ecology and evolution
nd, therefore, aid communication and improvement in that en-
erprise. Regardless of how our predictions ultimately succeed or
ail, whether in whole or in part, we have a responsibility to try
hem—and to try in new ways and with improved clarity. With
hat in mind, I close with one major suggestion. I think the right
pproach to prediction is to start from the realization that most
redictions will have elements of success and elements of fail-
re, and we should therefore focus on more useful questions,
uch as how predictable is a given phenomenon, what factors con-
ribute to variation in predictability, how much uncertainty exists
round those predictions, and how can we reduce those uncer-
ainties? Striving to answer these more realistic, more useful, and
ore practical quantitative questions should be a major goal of
redictive science moving forward. 
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